CCAAT/Enhancer binding proteins repress the leukemic phenotype of acute myeloid leukemia.
نویسندگان
چکیده
CCAAT/enhancer binding proteins (C/EBPs) are a family of factors that regulate cell growth and differentiation. These factors, particularly C/EBPalpha and C/EBPepsilon, have important roles in normal myelopoiesis. In addition, loss of C/EBP activity appears to have a role in the pathogenesis of myeloid disorders including acute myeloid leukemia (AML). Acute promyelocytic leukemia (APL) is a subtype of AML in which a role for C/EBPs has been postulated. In almost all cases of APL, a promyelocytic leukemia-retinoic acid receptor alpha (PML-RARalpha) fusion protein is expressed as a result of a t(15;17)(q22;q12) chromosomal translocation. PML-RARalpha inhibits expression of C/EBPepsilon, whereas all-trans retinoic acid (tRA), a differentiating agent to which APL is particularly susceptible, induces C/EBPepsilon expression. PML-RARalpha may also inhibit C/EBPalpha activity. Thus, the effects of PML-RARalpha on C/EBPs may contribute to both the development of leukemia and the unique sensitivity of APL to tRA. We tested the hypothesis that increasing the activity of C/EBPs would revert the leukemic phenotype. C/EBPalpha and C/EBPepsilon were introduced into the FDC-P1 myeloid cell line and into leukemic cells from PML-RARA transgenic mice. C/EBP factors suppressed growth and induced partial differentiation in vitro. In vivo, enhanced expression of C/EBPs prolonged survival. By using a tamoxifen-responsive version of C/EBPepsilon, we observed that C/EBPepsilon could mimic the effect of tRA, driving neutrophilic differentiation in leukemic animals. Our results support the hypothesis that induction of C/EBP activity is a critical effect of tRA in APL. Furthermore, our findings suggest that targeted modulation of C/EBP activities could provide a new approach to therapy of AML.
منابع مشابه
CCAAT/enhancer binding proteins alpha and epsilon cooperate with all-trans retinoic acid in therapy but differ in their antileukemic activities.
CCAAT/enhancer binding proteins (C/EBPs) play critical roles in myelopoiesis. Dysregulation of these proteins likely contributes to the pathogenesis of myeloid disorders characterized by a block in granulopoiesis. In one such disease, acute promyelocytic leukemia (APL), a promyelocytic leukemia-retinoic acid receptor alpha (PML-RARalpha) fusion protein is expressed as a result of a t(15;17) chr...
متن کاملExpression in Acute Myeloid Leukemia α Epigenetic Modification of CCAAT/Enhancer Binding Protein
Functional loss of CCAAT/enhancer binding protein a (C/ EBPa), a master regulatory transcription factor in the hematopoietic system, can result in a differentiation block in granulopoiesis and thus contribute to leukemic transformation. Here, we show the effect of epigenetic aberrations in regulating C/EBPA expression in acute myeloid leukemia (AML). Comprehensive DNA methylation analyses of th...
متن کاملEpigenetic Modification of CCAAT/Enhancer Binding Protein A Expression in Acute Myeloid Leukemia
Functional loss of CCAAT/enhancer binding protein a (C/ EBPa), a master regulatory transcription factor in the hematopoietic system, can result in a differentiation block in granulopoiesis and thus contribute to leukemic transformation. Here, we show the effect of epigenetic aberrations in regulating C/EBPA expression in acute myeloid leukemia (AML). Comprehensive DNA methylation analyses of th...
متن کاملIdentification of a myeloid committed progenitor as the cancer-initiating cell in acute promyelocytic leukemia.
Acute promyelocytic leukemia (APL) is characterized by a block in differentiation and accumulation of promyelocytes in the bone marrow and blood. The majority of APL patients harbor the t(15:17) translocation leading to expression of the fusion protein promyelocytic-retinoic acid receptor alpha. Treatment with retinoic acid leads to degradation of promyelocytic-retinoic acid receptor alpha prot...
متن کاملInhibition of Src family kinases enhances retinoic acid induced gene expression and myeloid differentiation.
Treatment of acute promyelocytic leukemia with retinoic acid (RA) results in differentiation of the leukemic cells and clinical remission. However, the cellular factors that regulate RA-induced myeloid differentiation are largely unknown, and other forms of acute myelogenous leukemia (AML) do not respond to this differentiation therapy. A greater understanding of the molecules that positively o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 101 3 شماره
صفحات -
تاریخ انتشار 2003